Optimal transport (OT) theory and the related $p$-Wasserstein distance ($W_p$, $p\geq 1$) are widely-applied in statistics and machine learning. In spite of their popularity, inference based on these tools is sensitive to outliers or it can perform poorly when the underlying model has heavy-tails. To cope with these issues, we introduce a new class of procedures. (i) We consider a robust version of the primal OT problem (ROBOT) and show that it defines the {robust Wasserstein distance}, $W^{(\lambda)}$, which depends on a tuning parameter $\lambda > 0$. (ii) We illustrate the link between $W_1$ and $W^{(\lambda)}$ and study its key measure theoretic aspects. (iii) We derive some concentration inequalities for $W^{(\lambda)}$. (iii) We use $W^{(\lambda)}$ to define minimum distance estimators, we provide their statistical guarantees and we illustrate how to apply concentration inequalities for the selection of $\lambda$. (v) We derive the {dual} form of the ROBOT and illustrate its applicability to machine learning problems (generative adversarial networks and domain adaptation). Numerical exercises provide evidence of the benefits yielded by our methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员