We report on cross-running the recent COVID-19 Identification ResNet (CIdeR) on the two Interspeech 2021 COVID-19 diagnosis from cough and speech audio challenges: ComParE and DiCOVA. CIdeR is an end-to-end deep learning neural network originally designed to classify whether an individual is COVID-positive or COVID-negative based on coughing and breathing audio recordings from a published crowdsourced dataset. In the current study, we demonstrate the potential of CIdeR at binary COVID-19 diagnosis from both the COVID-19 Cough and Speech Sub-Challenges of INTERSPEECH 2021, ComParE and DiCOVA. CIdeR achieves significant improvements over several baselines.


翻译:我们报告了最近COVID-19识别网(CIdeR)的交叉运行情况,报告了2021年COVID-19对咳嗽和言语声响挑战的两次Interspeech 2021 COVID-19诊断:ComParE和DiCOVA。 CIDER是一个端到端的深层学习神经网络,最初旨在根据已公布的众源数据集的咳嗽和呼吸录音,对一个人是COVID阳性还是COVID阴性进行分类。在本次研究中,我们展示了COVID-19 Cough和COVA的发言次挑战的二进式诊断中CIDER的潜力。 CIDER在若干基线上取得了显著进步。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
改进语音识别性能的数据增强技巧
深度学习每日摘要
8+阅读 · 2018年4月22日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
VIP会员
Top
微信扫码咨询专知VIP会员