While Large Language Models (LLMs) based agents have successfully mimicked human behaviors in various scenarios, the realm of complex, multi-character social interactions within extended contexts remains underexplored. The challenge is compounded by privacy concerns, making it difficult to capture and utilize intricate real-life interactions. More importantly, the absence of quantitative evaluation methods hampers the pursuit of high-quality agent interactions, often leading to interactions that are limited in informativeness and expressiveness, characterized by superficial small talk without clear intentions. In this work, we leverage the rules of Tabletop Role-Playing Games (TRPG) to create an environment conducive to complex, context-rich interactions, emphasizing informativeness and expressiveness. This virtual setting alleviates privacy concerns and motivates agents to engage in meaningful, high-quality interactions as part of their in-game objectives. To assess these interactions, we introduce the Agent interaction Evaluation framework (AntEval), targeting the qualitative evaluation of interaction informativeness and expressiveness. Specifically, we propose two novel evaluation metrics: Information Exchanging Precision (IEP) and Interaction Expressiveness Gap (IEG). These metrics are designed to assess interactions in scenarios focused on information exchange and intention expression, respectively. Our experimental results demonstrate the effectiveness of these metrics in evaluating interaction quality. Notably, we identify significant areas for improvement in LLMs regarding social interactions, as highlighted by our metrics. We believe AntEval will guide further exploration in complex agent interactions, bringing them closer to emulating real human behavior and enhancing their integration and utility in real-world applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员