Spiking Neural Networks (SNNs) have shown capabilities for solving diverse machine learning tasks with ultra-low-power/energy computation. To further improve the performance and efficiency of SNN inference, the Compute-in-Memory (CIM) paradigm with emerging device technologies such as resistive random access memory is employed. However, most of SNN architectures are developed without considering constraints from the application and the underlying CIM hardware (e.g., memory, area, latency, and energy consumption). Moreover, most of SNN designs are derived from the Artificial Neural Networks, whose network operations are different from SNNs. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose HASNAS, a novel hardware-aware spiking neural architecture search (NAS) framework for neuromorphic CIM systems that finds an SNN that offers high accuracy under the given memory, area, latency, and energy constraints. To achieve this, HASNAS employs the following key steps: (1) optimizing SNN operations to achieve high accuracy, (2) developing an SNN architecture that facilitates an effective learning process, and (3) devising a systematic hardware-aware search algorithm to meet the constraints. The experimental results show that our HASNAS quickly finds an SNN that maintains high accuracy compared to the state-of-the-art by up to 11x speed-up, and meets the given constraints: 4x10^6 parameters of memory, 100mm^2 of area, 400ms of latency, and 120uJ energy consumption for CIFAR10 and CIFAR100; while the state-of-the-art fails to meet the constraints. In this manner, our HASNAS can enable efficient design automation for providing high-performance and energy-efficient neuromorphic CIM systems for diverse applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员