The high dimensional parameter space of modern deep neural networks -- the neuromanifold -- is endowed with a unique metric tensor defined by the Fisher information, estimating which is crucial for both theory and practical methods in deep learning. To analyze this tensor for classification networks, we return to a low dimensional space of probability distributions -- the core space -- and carefully analyze the spectrum of its Riemannian metric. We extend our discoveries there into deterministic bounds of the metric tensor on the neuromanifold. We introduce an unbiased random estimate of the metric tensor and its bounds based on Hutchinson's trace estimator. It can be evaluated efficiently through a single backward pass, with a standard deviation bounded by the true value up to scaling.


翻译:现代深度神经网络的高维参数空间——神经流形——被赋予了一个由费舍尔信息定义的独特度量张量,其估计对于深度学习的理论和实践方法都至关重要。为了分析分类网络的这一张量,我们回到概率分布的低维空间——核心空间——并仔细分析其黎曼度量的谱。我们将此处的发现推广至神经流形上度量张量的确定性界。我们基于哈钦森迹估计器,引入了该度量张量及其界的无偏随机估计。该估计可通过单次反向传播高效计算,其标准差在缩放范围内以真实值为界。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员