Dynamic recommendation systems aim to provide personalized suggestions by modeling temporal user-item interactions across time-series behavioral data. Recent studies have leveraged pre-trained dynamic graph neural networks (GNNs) to learn user-item representations over temporal snapshot graphs. However, fine-tuning GNNs on these graphs often results in generalization issues due to temporal discrepancies between pre-training and fine-tuning stages, limiting the model's ability to capture evolving user preferences. To address this, we propose TarDGR, a task-aware retrieval-augmented framework designed to enhance generalization capability by incorporating task-aware model and retrieval-augmentation. Specifically, TarDGR introduces a Task-Aware Evaluation Mechanism to identify semantically relevant historical subgraphs, enabling the construction of task-specific datasets without manual labeling. It also presents a Graph Transformer-based Task-Aware Model that integrates semantic and structural encodings to assess subgraph relevance. During inference, TarDGR retrieves and fuses task-aware subgraphs with the query subgraph, enriching its representation and mitigating temporal generalization issues. Experiments on multiple large-scale dynamic graph datasets demonstrate that TarDGR consistently outperforms state-of-the-art methods, with extensive empirical evidence underscoring its superior accuracy and generalization capabilities.


翻译:动态推荐系统旨在通过建模时间序列行为数据中的时序用户-物品交互,提供个性化推荐。近期研究利用预训练的动态图神经网络(GNNs)在时序快照图上学习用户-物品表示。然而,在这些图上微调GNNs常因预训练与微调阶段间的时序差异导致泛化问题,限制了模型捕捉用户偏好演变的能力。为解决此问题,我们提出TarDGR,一种任务感知检索增强框架,通过结合任务感知模型与检索增强机制来提升泛化能力。具体而言,TarDGR引入任务感知评估机制以识别语义相关的历史子图,从而无需人工标注即可构建任务特定数据集。该框架还提出基于图Transformer的任务感知模型,整合语义与结构编码以评估子图相关性。在推理阶段,TarDGR检索任务感知子图并与查询子图融合,丰富其表示并缓解时序泛化问题。在多个大规模动态图数据集上的实验表明,TarDGR持续优于现有最优方法,大量实证证据凸显了其卓越的准确性与泛化能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员