We study the problem of fairly assigning a set of discrete tasks (or chores) among a set of agents with additive valuations. Each chore is associated with a start and finish time, and each agent can perform at most one chore at any given time. The goal is to find a fair and efficient schedule of the chores, where fairness pertains to satisfying envy-freeness up to one chore (EF1) and efficiency pertains to maximality (i.e., no unallocated chore can be feasibly assigned to any agent). Our main result is a polynomial-time algorithm for computing an EF1 and maximal schedule for two agents under monotone valuations when the conflict constraints constitute an arbitrary interval graph. The algorithm uses a coloring technique in interval graphs that may be of independent interest. For an arbitrary number of agents, we provide an algorithm for finding a fair schedule under identical dichotomous valuations when the constraints constitute a path graph. We also show that stronger fairness and efficiency properties, including envy-freeness up to any chore (EFX) along with maximality and EF1 along with Pareto optimality, cannot be achieved.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
37+阅读 · 2021年8月2日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
37+阅读 · 2021年8月2日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
10+阅读 · 2018年4月19日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员