A domain decomposition method for the solution of general variable-coefficient elliptic partial differential equations on regular domains is introduced. The method is based on tessellating the domain into overlapping thin slabs or shells, and then explicitly forming a reduced linear system that connects the different domains. Rank-structure ('H-matrix structure') is exploited to handle the large dense blocks that arise in the reduced linear system. Importantly, the formulation used is well-conditioned, as it converges to a second kind Fredholm equation as the precision in the local solves is refined. Moreover, the dense blocks that arise are far more data-sparse than in existing formulations, leading to faster and more efficient H-matrix arithmetic. To form the reduced linear system, black-box randomized compression is used, taking full advantage of the fact that sparse direct solvers are highly efficient on the thin sub-domains. Numerical experiments demonstrate that our solver can handle oscillatory 2D and 3D problems with as many as 28 million degrees of freedom.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员