This paper aims to provide understandings for the effect of an over-parameterized model, e.g. a deep neural network, memorizing instance-dependent noisy labels. We first quantify the harms caused by memorizing noisy instances from different spectra of the sample distribution. We then analyze how several popular solutions for learning with noisy labels mitigate this harm at the instance-level. Our analysis reveals new understandings for when these approaches work, and provides theoretical justifications for previously reported empirical observations. A key aspect of the analysis is its focus on each training instance.


翻译:本文旨在提供对超度参数模型效果的理解,例如深神经网络,记忆依赖实例的噪音标签。我们首先从样本分布的不同光谱中量化因记忆噪音事件造成的伤害。然后我们分析如何在实例一级通过一些流行的办法来学习噪音标签来减轻这种伤害。我们的分析揭示了对这些方法何时起作用的新理解,并为先前报告的经验性观察提供了理论依据。分析的一个重要方面是侧重于每个培训实例。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
109+阅读 · 2020年8月4日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员