Longitudinal processes are often associated with each other over time; therefore, it is important to investigate the associations among developmental processes and understand their joint development. The latent growth curve model (LGCM) with a time-varying covariate (TVC) provides a method to estimate the TVC's effect on a longitudinal outcome while simultaneously modeling the outcome's change. However, it does not allow the TVC to predict variations in the random growth coefficients. We propose decomposing the TVC's effect into initial trait and temporal states using three methods to address this limitation. In each method, the baseline of the TVC is viewed as an initial trait, and the corresponding effects are obtained by regressing random intercepts and slopes on the baseline value. Temporal states are characterized as (1) interval-specific slopes, (2) interval-specific changes, or (3) changes from the baseline at each measurement occasion, depending on the method. We demonstrate our methods through simulations and real-world data analyses, assuming a linear-linear functional form for the longitudinal outcome. The results demonstrate that LGCMs with a decomposed TVC can provide unbiased and precise estimates with target confidence intervals. We also provide OpenMx and Mplus 8 code for these methods with commonly used linear and nonlinear functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

视觉计算机(TVC)期刊发布关于捕捉,识别,建模,分析和生成形状和图像的所有研究领域的文章。它包括图像理解,用于图形的机器学习和3D制作。还覆盖以下主题:3D重建、电脑动画、计算结构、计算几何、计算摄影计算机图形学的计算机视觉、图形数据压缩、几何造型、几何加工、人机交互和计算机图形学、人体建模、图像分析、基于图像的渲染、图像处理、图形机器学习、医学影像、模式识别、基于物理的建模、照明和渲染方法 、 机器人与视觉、显着方法、科学可视化、形状和表面建模、形状分析和图像检索、形状匹配、基于草图的建模、实体建模、程式化的渲染、贴图、虚拟和增强现实、视觉分析、体积渲染。 官网地址:http://dblp.uni-trier.de/db/journals/vc/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员