In the MAXSPACE problem, given a set of ads A, one wants to schedule a subset A' of A into K slots B_1, ..., B_K of size L. Each ad A_i in A has a size s_i and a frequency w_i. A schedule is feasible if the total size of ads in any slot is at most L, and each ad A_i in A' appears in exactly w_i slots. The goal is to find a feasible schedule that maximizes the sum of the space occupied by all slots. We introduce a generalization called MAXSPACE-R in which each ad A_i also has a release date r_i >= 1, and may only appear in a slot B_j with j >= r_i. We also introduce a generalization of MAXSPACE-R called MAXSPACE-RD in which each ad A_i also has a deadline d_i <= K, and may only appear in a slot B_j with r_i <= j <= d_i. These parameters model situations where a subset of ads corresponds to a commercial campaign with an announcement date that may expire after some defined period. We present a 1/9-approximation algorithm for MAXSPACE-R and a polynomial-time approximation scheme for MAXSPACE-RD when K is bounded by a constant. This is the best factor one can expect, since MAXSPACE is strongly NP-hard, even if K = 2.


翻译:在MAX SPACE问题中,如果有一套AA广告,人们想要将A的子AA' 排入K 槽 B_1,...,...,., B_K 大小L., 大小L.,............. A........... A....................................

0
下载
关闭预览

相关内容

【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
49+阅读 · 2021年10月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
少标签数据学习,54页ppt
专知会员服务
205+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年10月24日
VIP会员
相关VIP内容
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
49+阅读 · 2021年10月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
少标签数据学习,54页ppt
专知会员服务
205+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员