Maximum-entropy methods, rooted in the inverse Ising/Potts problem from statistical mechanics, have become indispensable tools for modeling pairwise interactions in disciplines such as bioinformatics, ecology, and neuroscience. Despite their remarkable success, these methods often overlook high-order interactions that may be crucial in complex systems. Conversely, while modern machine learning approaches can capture such interactions, existing interpretable frameworks are computationally expensive, making it impractical to assess the relevance of high-order interactions in real-world scenarios. Restricted Boltzmann Machines (RBMs) offer a computationally efficient alternative by encoding statistical correlations via hidden nodes in a bipartite neural network. Here, we present a method that maps RBMs exactly onto generalized Potts models with interactions of arbitrary high order. This approach leverages large-$N$ approximations, facilitated by the simple architecture of the RBM, to enable the efficient extraction of effective many-body couplings with minimal computational cost. This mapping also enables the development of a general formal framework for the extraction of effective higher-order interactions in arbitrarily complex probabilistic models. Additionally, we introduce a robust formalism for gauge fixing within the generalized Potts model. We validate our method by accurately recovering two- and three-body interactions from synthetic datasets. Additionally, applying our framework to protein sequence data demonstrates its effectiveness in reconstructing protein contact maps, achieving performance comparable to state-of-the-art inverse Potts models. These results position RBMs as a powerful and efficient tool for investigating high-order interactions in complex systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员