The Dynamic Time Warping (DTW) distance is a popular similarity measure for polygonal curves (i.e., sequences of points). It finds many theoretical and practical applications, especially for temporal data, and is known to be a robust, outlier-insensitive alternative to the Fr\'echet distance. For static curves of at most $n$ points, the DTW distance can be computed in $O(n^2)$ time in constant dimension. This tightly matches a SETH-based lower bound, even for curves in $\mathbb{R}^1$. We study dynamic algorithms for the DTW distance. We accommodate local changes to one or both curves, such as inserting or deleting vertices and, after each operation, can report the updated DTW distance. We give such a data structure with update and query time $O(n^{1.5} \log n)$, where $n$ is the maximum length of the curves. The natural follow-up question is whether this time bound can be improved; under the aforementioned SETH-based lower bound, we could even hope for linear update time. We refute these hopes and prove that our data structure is conditionally optimal, up to subpolynomial factors. More precisely, we prove that, already for curves in $\mathbb{R}^1$, there is no dynamic algorithm to maintain the DTW distance with update and query time $O(n^{1.5 - \delta})$ for any constant~$\delta > 0$, unless the Negative-$k$-Clique Hypothesis fails. This holds even if one of the curves is fixed at all times, whereas the points of the other curve may only undergo substitutions. In fact, we give matching upper and lower bounds for various further trade-offs between update and query time, even in cases where the lengths of the curves differ. The Negative-$k$-Clique Hypothesis is a recent but well-established hypothesis from fine-grained complexity, that generalizes the famous APSP Hypothesis, and successfully led to several lower bounds.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月17日
Arxiv
0+阅读 · 2023年12月13日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年12月17日
Arxiv
0+阅读 · 2023年12月13日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
14+阅读 · 2020年9月1日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员