Previous work has shown that DNNs with large depth $L$ and $L_{2}$-regularization are biased towards learning low-dimensional representations of the inputs, which can be interpreted as minimizing a notion of rank $R^{(0)}(f)$ of the learned function $f$, conjectured to be the Bottleneck rank. We compute finite depth corrections to this result, revealing a measure $R^{(1)}$ of regularity which bounds the pseudo-determinant of the Jacobian $\left|Jf(x)\right|_{+}$ and is subadditive under composition and addition. This formalizes a balance between learning low-dimensional representations and minimizing complexity/irregularity in the feature maps, allowing the network to learn the `right' inner dimension. We also show how large learning rates also control the regularity of the learned function. Finally, we use these theoretical tools to prove the conjectured bottleneck structure in the learned features as $L\to\infty$: for large depths, almost all hidden representations concentrates around $R^{(0)}(f)$-dimensional representations. These limiting low-dimensional representation can be described using the second correction $R^{(2)}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员