The model-X conditional randomization test (CRT) is a flexible and powerful testing procedure for the conditional independence hypothesis: X is independent of Y conditioning on Z. Though having many attractive properties, the model-X CRT relies on the model-X assumption that we have perfect knowledge of the distribution of X | Z. If there is an error in modeling the distribution of X | Z, this approach may lose its validity. This problem is even more severe when the adjustment covariates Z are of high dimensionality, in which situation precise modeling of X against Z can be hard. In response to this, we propose the Maxway (Model and Adjust X With the Assistance of Y) CRT, which learns the distribution of Y | Z, and uses it to calibrate the resampling distribution of X to gain robustness to the error in modeling X. We prove that the type-I error inflation of the Maxway CRT can be controlled by the learning error for the low-dimensional adjusting model plus the product of learning errors for X | Z and Y | Z, which could be interpreted as an "almost doubly robust" property. Based on this, we develop implementing algorithms of the Maxway CRT in practical scenarios including (surrogate-assisted) semi-supervised learning and transfer learning where valid information about Y | Z can be potentially provided by some auxiliary or external data. Through extensive simulation studies under different scenarios, we demonstrate that the Maxway CRT achieves significantly better type-I error control than existing model-X inference approaches while preserving similar powers. Finally, we apply our methodology to two real examples, including (1) studying obesity paradox with electronic health record (EHR) data assisted by surrogate variables; (2) inferring the side effect of statins among the ethnic minority group via transferring knowledge from the majority group.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
30+阅读 · 2022年9月10日
Arxiv
15+阅读 · 2020年12月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
30+阅读 · 2022年9月10日
Arxiv
15+阅读 · 2020年12月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
75+阅读 · 2019年8月14日
相关基金
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员