In the future 6G integrated sensing and communication (ISAC) cellular systems, networked sensing is a promising technique that can leverage the cooperation among the base stations (BSs) to perform high-resolution localization. However, a dense deployment of BSs to fully reap the networked sensing gain is not a cost-efficient solution in practice. Motivated by the advance in the intelligent reflecting surface (IRS) technology for 6G communication, this paper examines the feasibility of deploying the low-cost IRSs to enhance the anchor density for networked sensing. Specifically, we propose a novel heterogeneous networked sensing architecture, which consists of both the active anchors, i.e., the BSs, and the passive anchors, i.e., the IRSs. Under this framework, the BSs emit the orthogonal frequency division multiplexing (OFDM) communication signals in the downlink for localizing the targets based on their echoes reflected via/not via the IRSs. However, there are two challenges for using passive anchors in localization. First, it is impossible to utilize the round-trip signal between a passive IRS and a passive target for estimating their distance. Second, before localizing a target, we do not know which IRS is closest to it and serves as its anchor. In this paper, we show that the distance between a target and its associated IRS can be indirectly estimated based on the length of the BS-target-BS path and the BS-target-IRS-BS path. Moreover, we propose an efficient data association method to match each target to its associated IRS. Numerical results are given to validate the feasibility and effectiveness of our proposed heterogeneous networked sensing architecture with both active and passive anchors.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员