Approximating a function with a finite series, e.g., involving polynomials or trigonometric functions, is a critical tool in computing and data analysis. The construction of such approximations via now-standard approaches like least squares or compressive sampling does not ensure that the approximation adheres to certain convex linear structural constraints, such as positivity or monotonicity. Existing approaches that ensure such structure are norm-dissipative and this can have a deleterious impact when applying these approaches, e.g., when numerical solving partial differential equations. We present a new framework that enforces via optimization such structure on approximations and is simultaneously norm-preserving. This results in a conceptually simple convex optimization problem on the sphere, but the feasible set for such problems can be very complex. We establish well-posedness of the optimization problem through results on spherical convexity and design several spherical-projection-based algorithms to numerically compute the solution. Finally, we demonstrate the effectiveness of this approach through several numerical examples.


翻译:以有限序列(例如,涉及多数值或三角函数)对等函数进行匹配,是计算和数据分析的一个关键工具。通过现在的标准方法(如最小正方或压缩抽样)构建这种近似,并不能确保近近似符合某些二次曲线线性结构限制,例如主动性或单一性。现有的方法确保这种结构具有标准差异性,在应用这些方法时可能会产生有害影响,例如,在数字解决部分差异方程式时。我们提出了一个新框架,通过优化近似结构来实施,同时保留规范。这在概念上造成一个简单矩形优化问题,但针对此类问题的可行办法可能非常复杂。我们通过球形凝结结果来确定优化问题的准确性,并设计若干基于球形预测的算法,以便用数字来计算解决方案。最后,我们通过几个数字示例来展示这一方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
197+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员