The subgradient method is one of the most fundamental algorithmic schemes for nonsmooth optimization. The existing complexity and convergence results for this algorithm are mainly derived for Lipschitz continuous objective functions. In this work, we first extend the typical complexity results for the subgradient method to convex and weakly convex minimization without assuming Lipschitz continuity. Specifically, we establish $\mathcal{O}(1/\sqrt{T})$ bound in terms of the suboptimality gap ``$f(x) - f^*$'' for convex case and $\mathcal{O}(1/{T}^{1/4})$ bound in terms of the gradient of the Moreau envelope function for weakly convex case. Furthermore, we provide convergence results for non-Lipschitz convex and weakly convex objective functions using proper diminishing rules on the step sizes. In particular, when $f$ is convex, we show $\mathcal{O}(\log(k)/\sqrt{k})$ rate of convergence in terms of the suboptimality gap. With an additional quadratic growth condition, the rate is improved to $\mathcal{O}(1/k)$ in terms of the squared distance to the optimal solution set. When $f$ is weakly convex, asymptotic convergence is derived. The central idea is that the dynamics of properly chosen step sizes rule fully controls the movement of the subgradient method, which leads to boundedness of the iterates, and then a trajectory-based analysis can be conducted to establish the desired results. To further illustrate the wide applicability of our framework, we extend the complexity results to the truncated subgradient, the stochastic subgradient, the incremental subgradient, and the proximal subgradient methods for non-Lipschitz functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员