Research on audio generation has progressively shifted from waveform-based approaches to spectrogram-based methods, which more naturally capture harmonic and temporal structures. At the same time, advances in image synthesis have shown that autoregression across scales, rather than tokens, improves coherence and detail. Building on these ideas, we introduce MARS (Multi-channel AutoRegression on Spectrograms), a framework that treats spectrograms as multi-channel images and employs channel multiplexing (CMX), a reshaping technique that lowers height and width without discarding information. A shared tokenizer provides consistent discrete representations across scales, enabling a transformer-based autoregressor to refine spectrograms from coarse to fine resolutions efficiently. Experiments on a large-scale dataset demonstrate that MARS performs comparably or better than state-of-the-art baselines across multiple evaluation metrics, establishing an efficient and scalable paradigm for high-fidelity audio generation.
翻译:暂无翻译