Traffic signs play a critical role in road safety and traffic management for autonomous driving systems. Accurate traffic sign classification is essential but challenging due to real-world complexities like adversarial examples and occlusions. To address these issues, binary neural networks offer promise in constructing classifiers suitable for resource-constrained devices. In our previous work, we proposed high-accuracy BNN models for traffic sign recognition, focusing on compact size for limited computation and energy resources. To evaluate their local robustness, this paper introduces a set of benchmark problems featuring layers that challenge state-of-the-art verification tools. These layers include binarized convolutions, max pooling, batch normalization, fully connected. The difficulty of the verification problem is given by the high number of network parameters (905k - 1.7 M), of the input dimension (2.7k-12k), and of the number of regions (43) as well by the fact that the neural networks are not sparse. The proposed BNN models and local robustness properties can be checked at https://github.com/ChristopherBrix/vnncomp2023_benchmarks/tree/main/benchmarks/traffic_signs_recognition. The results of the 4th International Verification of Neural Networks Competition (VNN-COMP'23) revealed the fact that 4, out of 7, solvers can handle many of our benchmarks randomly selected (minimum is 6, maximum is 36, out of 45). Surprisingly, tools output also wrong results or missing counterexample (ranging from 1 to 4). Currently, our focus lies in exploring the possibility of achieving a greater count of solved instances by extending the allotted time (previously set at 8 minutes). Furthermore, we are intrigued by the reasons behind the erroneous outcomes provided by the tools for certain benchmarks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员