As end-user device capability increases and demand for intelligent services at the Internet's edge rise, distributed learning has emerged as a key enabling technology. Existing approaches like federated learning (FL) and decentralized FL (DFL) enable distributed learning among clients, while gossip learning (GL) approaches have emerged to address the potential challenges in resource-constrained, connectivity-challenged infrastructure-less environments. However, most distributed learning approaches assume largely homogeneous data distributions and may not consider or exploit the heterogeneity of clients and their underlying data distributions. This paper introduces Chisme, a novel fully decentralized distributed learning algorithm designed to address the challenges of implementing robust intelligence in network edge contexts characterized by heterogeneous data distributions, episodic connectivity, and sparse network infrastructure. Chisme leverages cosine similarity-based data affinity heuristics calculated from received model exchanges to inform how much influence received models have when merging into the local model. By doing so, it facilitates stronger merging influence between clients with more similar model learning progressions, enabling clients to strategically balance between broader collaboration to build more general knowledge and more selective collaboration to build specific knowledge. We evaluate Chisme against contemporary approaches using image recognition and time-series prediction scenarios while considering different network connectivity conditions, representative of real-world distributed intelligent systems. Our experiments demonstrate that Chisme outperforms state-of-the-art edge intelligence approaches in almost every case -- clients using Chisme exhibit faster training convergence, lower final loss after training, and lower performance disparity between clients.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员