One-shot channel simulation has recently emerged as a promising alternative to quantization and entropy coding in machine-learning-based lossy data compression schemes. However, while there are several potential applications of channel simulation - lossy compression with realism constraints or differential privacy, to name a few - little is known about its fundamental limitations. In this paper, we restrict our attention to a subclass of channel simulation protocols called causal rejection samplers (CRS), establish new, tighter lower bounds on their expected runtime and codelength, and demonstrate the bounds' achievability. Concretely, for an arbitrary CRS, let $Q$ and $P$ denote a target and proposal distribution supplied as input, and let $K$ be the number of samples examined by the algorithm. We show that the expected runtime $\mathbb{E}[K]$ of any CRS scales at least as $\exp_2(D_\infty[Q || P])$, where $D_\infty[Q || P]$ is the R\'enyi $\infty$-divergence. Regarding the codelength, we show that $D_{KL}[Q || P] \leq D_{CS}[Q || P] \leq \mathbb{H}[K]$, where $D_{CS}[Q || P]$ is a new quantity we call the channel simulation divergence. Furthermore, we prove that our new lower bound, unlike the $D_{KL}[Q || P]$ lower bound, is achievable tightly, i.e. there is a CRS such that $\mathbb{H}[K] \leq D_{CS}[Q || P] + \log_2 (e + 1)$. Finally, we conduct numerical studies of the asymptotic scaling of the codelength of Gaussian and Laplace channel simulation algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员