Given a source and a target probability measure supported on $\mathbb{R}^d$, the Monge problem asks to find the most efficient way to map one distribution to the other. This efficiency is quantified by defining a \textit{cost} function between source and target data. Such a cost is often set by default in the machine learning literature to the squared-Euclidean distance, $\ell^2_2(\mathbf{x},\mathbf{y})=\tfrac12|\mathbf{x}-\mathbf{y}|_2^2$. Recently, Cuturi et. al '23 highlighted the benefits of using elastic costs, defined through a regularizer $\tau$ as $c(\mathbf{x},\mathbf{y})=\ell^2_2(\mathbf{x},\mathbf{y})+\tau(\mathbf{x}-\mathbf{y})$. Such costs shape the \textit{displacements} of Monge maps $T$, i.e., the difference between a source point and its image $T(\mathbf{x})-\mathbf{x})$, by giving them a structure that matches that of the proximal operator of $\tau$. In this work, we make two important contributions to the study of elastic costs: (i) For any elastic cost, we propose a numerical method to compute Monge maps that are provably optimal. This provides a much-needed routine to create synthetic problems where the ground truth OT map is known, by analogy to the Brenier theorem, which states that the gradient of any convex potential is always a valid Monge map for the $\ell_2^2$ cost; (ii) We propose a loss to \textit{learn} the parameter $\theta$ of a parameterized regularizer $\tau_\theta$, and apply it in the case where $\tau_{A}(\mathbf{z})=|A^\perp \mathbf{z}|^2_2$. This regularizer promotes displacements that lie on a low dimensional subspace of $\mathbb{R}^d$, spanned by the $p$ rows of $A\in\mathbb{R}^{p\times d}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员