Contextual bandits, which leverage the baseline features of sequentially arriving individuals to optimize cumulative rewards while balancing exploration and exploitation, are critical for online decision-making. Existing approaches typically assume no interference, where each individual's action affects only their own reward. Yet, such an assumption can be violated in many practical scenarios, and the oversight of interference can lead to short-sighted policies that focus solely on maximizing the immediate outcomes for individuals, which further results in suboptimal decisions and potentially increased regret over time. To address this significant gap, we introduce the foresighted online policy with interference (FRONT) that innovatively considers the long-term impact of the current decision on subsequent decisions and rewards. The proposed FRONT method employs a sequence of exploratory and exploitative strategies to manage the intricacies of interference, ensuring robust parameter inference and regret minimization. Theoretically, we establish a tail bound for the online estimator and derive the asymptotic distribution of the parameters of interest under suitable conditions on the interference network. We further show that FRONT attains sublinear regret under two distinct definitions, capturing both the immediate and consequential impacts of decisions, and we establish these results with and without statistical inference. The effectiveness of FRONT is further demonstrated through extensive simulations and a real-world application to urban hotel profits.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2021年6月27日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员