The enhancement of unsupervised learning of sentence representations has been significantly achieved by the utility of contrastive learning. This approach clusters the augmented positive instance with the anchor instance to create a desired embedding space. However, relying solely on the contrastive objective can result in sub-optimal outcomes due to its inability to differentiate subtle semantic variations between positive pairs. Specifically, common data augmentation techniques frequently introduce semantic distortion, leading to a semantic margin between the positive pair. While the InfoNCE loss function overlooks the semantic margin and prioritizes similarity maximization between positive pairs during training, leading to the insensitive semantic comprehension ability of the trained model. In this paper, we introduce a novel Identical and Fraternal Twins of Contrastive Learning (named IFTCL) framework, capable of simultaneously adapting to various positive pairs generated by different augmentation techniques. We propose a \textit{Twins Loss} to preserve the innate margin during training and promote the potential of data enhancement in order to overcome the sub-optimal issue. We also present proof-of-concept experiments combined with the contrastive objective to prove the validity of the proposed Twins Loss. Furthermore, we propose a hippocampus queue mechanism to restore and reuse the negative instances without additional calculation, which further enhances the efficiency and performance of the IFCL. We verify the IFCL framework on nine semantic textual similarity tasks with both English and Chinese datasets, and the experimental results show that IFCL outperforms state-of-the-art methods.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员