How do we know if two systems - biological or artificial - process information in a similar way? Similarity measures such as linear regression, Centered Kernel Alignment (CKA), Normalized Bures Similarity (NBS), and angular Procrustes distance, are often used to quantify this similarity. However, it is currently unclear what drives high similarity scores and even what constitutes a "good" score. Here, we introduce a novel tool to investigate these questions by differentiating through similarity measures to directly maximize the score. Surprisingly, we find that high similarity scores do not guarantee encoding task-relevant information in a manner consistent with neural data; and this is particularly acute for CKA and even some variations of cross-validated and regularized linear regression. We find no consistent threshold for a good similarity score - it depends on both the measure and the dataset. In addition, synthetic datasets optimized to maximize similarity scores initially learn the highest variance principal component of the target dataset, but some methods like angular Procrustes capture lower variance dimensions much earlier than methods like CKA. To shed light on this, we mathematically derive the sensitivity of CKA, angular Procrustes, and NBS to the variance of principal component dimensions, and explain the emphasis CKA places on high variance components. Finally, by jointly optimizing multiple similarity measures, we characterize their allowable ranges and reveal that some similarity measures are more constraining than others. While current measures offer a seemingly straightforward way to quantify the similarity between neural systems, our work underscores the need for careful interpretation. We hope the tools we developed will be used by practitioners to better understand current and future similarity measures.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年12月4日
Arxiv
21+阅读 · 2023年7月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员