Bayesian Image-on-Scalar Regression (ISR) offers significant advantages for neuroimaging data analysis, including flexibility and the ability to quantify uncertainty. However, its application to large-scale imaging datasets, such as found in the UK Biobank, is hindered by the computational demands of traditional posterior computation methods, as well as the challenge of individual-specific brain masks that deviate from the common mask typically used in standard ISR approaches. To address these challenges, we introduce a novel Bayesian ISR model that is scalable and accommodates inconsistent brain masks across subjects in large scale imaging studies. Our model leverages Gaussian process priors and integrates salience area indicators to facilitate ISR. We develop a cutting-edge scalable posterior computation algorithm that employs stochastic gradient Langevin dynamics coupled with memory mapping techniques, ensuring that computation time scales linearly with subsample size and memory usage is constrained only by the batch size. Our approach uniquely enables direct spatial posterior inferences on brain activation regions. The efficacy of our method is demonstrated through simulations and analysis of the UK Biobank task fMRI data, encompassing 8411 subjects and over 120,000 voxels per image, showing that it can achieve a speed increase of 4 to 11 times and enhance statistical power by 8% to 18% compared to traditional Gibbs sampling with zero-imputation in various simulation scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员