We present the Trust Region Adversarial Functional Subdifferential (TRAFS) algorithm for constrained optimization of nonsmooth convex Lipschitz functions. Unlike previous methods that assume a subgradient oracle model, we work with the functional subdifferential defined as a set of subgradients that simultaneously captures sufficient local information for effective minimization while being easy to compute for a wide range of functions. In each iteration, TRAFS finds the best step vector in an $\ell_2$-bounded trust region by considering the worst bound given by the functional subdifferential. TRAFS finds an approximate solution with an absolute error up to $\epsilon$ in $\mathcal{O}\left( \epsilon^{-1}\right)$ or $\mathcal{O}\left(\epsilon^{-0.5} \right)$ iterations depending on whether the objective function is strongly convex, compared to the previously best-known bounds of $\mathcal{O}\left(\epsilon^{-2}\right)$ and $\mathcal{O}\left(\epsilon^{-1}\right)$ in these settings. TRAFS makes faster progress if the functional subdifferential satisfies a locally quadratic property; as a corollary, TRAFS achieves linear convergence (i.e., $\mathcal{O}\left(\log \epsilon^{-1}\right)$) for strongly convex smooth functions. In the numerical experiments, TRAFS is on average 39.1x faster and solves twice as many problems compared to the second-best method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员