An adjacency sketching or implicit labeling scheme for a family $\cal F$ of graphs is a method that defines for any $n$ vertex $G \in \cal F$ an assignment of labels to each vertex in $G$, so that the labels of two vertices tell you whether or not they are adjacent. The goal is to come up with labeling schemes that use as few bits as possible to represent the labels. By using randomness when assigning labels, it is sometimes possible to produce adjacency sketches with much smaller label sizes, but this comes at the cost of introducing some probability of error. Both deterministic and randomized labeling schemes have been extensively studied, as they have applications for distributed data structures and deeper connections to universal graphs and communication complexity. The main question of interest is which graph families have schemes using short labels, usually $O(\log n)$ in the deterministic case or constant for randomized sketches. In this work we consider the resilience of probabilistic adjacency sketches against an adversary making adaptive queries to the labels. This differs from the previously analyzed probabilistic setting which is ``one shot". We show that in the adaptive adversarial case the size of the labels is tightly related to the maximal degree of the graphs in $\cal F$. This results in a stronger characterization compared to what is known in the non-adversarial setting. In more detail, we construct sketches that fail with probability $\varepsilon$ for graphs with maximal degree $d$ using $2d\log (1/\varepsilon)$ bit labels and show that this is roughly the best that can be done for any specific graph of maximal degree $d$, e.g.\ a $d$-ary tree.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月24日
Arxiv
0+阅读 · 2023年10月24日
Arxiv
0+阅读 · 2023年10月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年10月24日
Arxiv
0+阅读 · 2023年10月24日
Arxiv
0+阅读 · 2023年10月20日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员