Quantum low-density parity-check (qLDPC) codes are an important component in the quest for quantum fault tolerance. Dramatic recent progress on qLDPC codes has led to constructions which are asymptotically good, and which admit linear-time decoders to correct errors affecting a constant fraction of codeword qubits. These constructions, while theoretically explicit, rely on inner codes with strong properties only shown to exist by probabilistic arguments, resulting in lengths that are too large to be practically relevant. In practice, the surface/toric codes, which are the product of two repetition codes, are still often the qLDPC codes of choice. A previous construction based on the lifted product of an expander-based classical LDPC code with a repetition code (Panteleev & Kalachev, 2020) achieved a near-linear distance (of $\Omega(N/\log N)$ where $N$ is the number of codeword qubits), and avoids the need for such intractable inner codes. Our main result is an efficient decoding algorithm for these codes that corrects $\Theta(N/\log N)$ adversarial errors. En route, we give such an algorithm for the hypergraph product version these codes, which have weaker $\Theta(\sqrt{N})$ distance (but are simpler). Our decoding algorithms leverage the fact that the codes we consider are quasi-cyclic, meaning that they respect a cyclic group symmetry. Since the repetition code is not based on expanders, previous approaches to decoding expander-based qLDPC codes, which typically worked by greedily flipping code bits to reduce some potential function, do not apply in our setting. Instead, we reduce our decoding problem (in a black-box manner) to that of decoding classical expander-based LDPC codes under noisy parity-check syndromes. For completeness, we also include a treatment of such classical noisy-syndrome decoding that is sufficient for our application to the quantum setting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
1+阅读 · 2024年12月18日
Arxiv
10+阅读 · 2020年6月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员