Genome-wide association studies (GWAS) have led to the discovery of numerous single nucleotide polymorphisms (SNPs) associated with various phenotypes and complex diseases. However, the identified genetic variants do not fully explain the heritability of complex traits, known as the missing heritability problem. To address this challenge and accurately control false positives while maximizing true associations, we propose two approaches involving linkage disequilibrium (LD) scores as covariates. We apply principal component analysis (PCA), one of the dimensionality reduction techniques, to control the False Discovery Rate (FDR) in the presence of high-dimensional covariates. This method not only provides a convenient interpretation of how multiple covariates in high dimensions affect the control of FDR but also offers higher statistical power compared to cases where covariates are not used. Furthermore, we aim to investigate how covariates contribute to increasing the statistical power through various simulation experiments, comparing the results with real data examples to derive better interpretations. Using real-world datasets, including GWAS with Body Mass Index (BMI) as the phenotype, we evaluate the performance of our proposed approaches. By incorporating LD scores as covariates in FDR-controlled GWAS analyzes, we demonstrate their effectiveness in selecting informative LD scores and improving the identification of significant SNPs. Our methods alleviate computational burden and enhance interpretability while retaining essential information from LD scores. In general, our study contributes to the advancement of statistical methods in GWAS and provides practical guidance for researchers looking to improve the precision of genetic association analyses.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员