3D Gaussian splatting (3DGS) is a transformative technique with profound implications on novel view synthesis and real-time rendering. Given its importance, there have been many attempts to improve its performance. However, with the increasing complexity of GPU architectures and the vast search space of performance-tuning parameters, it is a challenging task. Although manual optimizations have achieved remarkable speedups, they require domain expertise and the optimization process can be highly time consuming and error prone. In this paper, we propose to exploit large language models (LLMs) to analyze and optimize Gaussian splatting kernels. To our knowledge, this is the first work to use LLMs to optimize highly specialized real-world GPU kernels. We reveal the intricacies of using LLMs for code optimization and analyze the code optimization techniques from the LLMs. We also propose ways to collaborate with LLMs to further leverage their capabilities. For the original 3DGS code on the MipNeRF360 datasets, LLMs achieve significant speedups, 19% with Deepseek and 24% with GPT-5, demonstrating the different capabilities of different LLMs. By feeding additional information from performance profilers, the performance improvement from LLM-optimized code is enhanced to up to 42% and 38% on average. In comparison, our best-effort manually optimized version can achieve a performance improvement up to 48% and 39% on average, showing that there are still optimizations beyond the capabilities of current LLMs. On the other hand, even upon a newly proposed 3DGS framework with algorithmic optimizations, Seele, LLMs can still further enhance its performance by 6%, showing that there are optimization opportunities missed by domain experts. This highlights the potential of collaboration between domain experts and LLMs.
翻译:暂无翻译