Ensuring transparency of data practices related to personal information is a core requirement of the General Data Protection Regulation (GDPR). However, large-scale compliance assessment remains challenging due to the complexity and diversity of privacy policy language. Manual audits are labour-intensive and inconsistent, while current automated methods often lack the granularity required to capture nuanced transparency disclosures. In this paper, we present a modular large language model (LLM)-based pipeline for fine-grained word-level annotation of privacy policies with respect to GDPR transparency requirements. Our approach integrates LLM-driven annotation with passage-level classification, retrieval-augmented generation, and a self-correction mechanism to deliver scalable, context-aware annotations across 21 GDPR-derived transparency requirements. To support empirical evaluation, we compile a corpus of 703,791 English-language privacy policies and generate a ground-truth sample of 200 manually annotated policies based on a comprehensive, GDPR-aligned annotation scheme. We propose a two-tiered evaluation methodology capturing both passage-level classification and span-level annotation quality and conduct a comparative analysis of seven state-of-the-art LLMs on two annotation schemes, including the widely used OPP-115 dataset. The results of our evaluation show that decomposing the annotation task and integrating targeted retrieval and classification components significantly improve annotation accuracy, particularly for well-structured requirements. Our work provides new empirical resources and methodological foundations for advancing automated transparency compliance assessment at scale.
翻译:暂无翻译