To determine whether using discrete semantic entropy (DSE) to reject questions likely to generate hallucinations can improve the accuracy of black-box vision-language models (VLMs) in radiologic image based visual question answering (VQA). This retrospective study evaluated DSE using two publicly available, de-identified datasets: (i) the VQA-Med 2019 benchmark (500 images with clinical questions and short-text answers) and (ii) a diagnostic radiology dataset (206 cases: 60 computed tomography scans, 60 magnetic resonance images, 60 radiographs, 26 angiograms) with corresponding ground-truth diagnoses. GPT-4o and GPT-4.1 answered each question 15 times using a temperature of 1.0. Baseline accuracy was determined using low-temperature answers (temperature 0.1). Meaning-equivalent responses were grouped using bidirectional entailment checks, and DSE was computed from the relative frequencies of the resulting semantic clusters. Accuracy was recalculated after excluding questions with DSE > 0.6 or > 0.3. p-values and 95% confidence intervals were obtained using bootstrap resampling and a Bonferroni-corrected threshold of p < .004 for statistical significance. Across 706 image-question pairs, baseline accuracy was 51.7% for GPT-4o and 54.8% for GPT-4.1. After filtering out high-entropy questions (DSE > 0.3), accuracy on the remaining questions was 76.3% (retained questions: 334/706) for GPT-4o and 63.8% (retained questions: 499/706) for GPT-4.1 (both p < .001). Accuracy gains were observed across both datasets and largely remained statistically significant after Bonferroni correction. DSE enables reliable hallucination detection in black-box VLMs by quantifying semantic inconsistency. This method significantly improves diagnostic answer accuracy and offers a filtering strategy for clinical VLM applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员