Predicting corporate earnings surprises is a profitable yet challenging task, as accurate forecasts can inform significant investment decisions. However, progress in this domain has been constrained by a reliance on expensive, proprietary, and text-only data, limiting the development of advanced models. To address this gap, we introduce \textbf{FinCall-Surprise} (Financial Conference Call for Earning Surprise Prediction), the first large-scale, open-source, and multi-modal dataset for earnings surprise prediction. Comprising 2,688 unique corporate conference calls from 2019 to 2021, our dataset features word-to-word conference call textual transcripts, full audio recordings, and corresponding presentation slides. We establish a comprehensive benchmark by evaluating 26 state-of-the-art unimodal and multi-modal LLMs. Our findings reveal that (1) while many models achieve high accuracy, this performance is often an illusion caused by significant class imbalance in the real-world data. (2) Some specialized financial models demonstrate unexpected weaknesses in instruction-following and language generation. (3) Although incorporating audio and visual modalities provides some performance gains, current models still struggle to leverage these signals effectively. These results highlight critical limitations in the financial reasoning capabilities of existing LLMs and establish a challenging new baseline for future research.
翻译:暂无翻译