In recent years, the increasing size of deep learning models and their growing demand for computational resources have drawn significant attention to the practice of pruning neural networks, while aiming to preserve their accuracy. In unstructured gradual pruning, which sparsifies a network by gradually removing individual network parameters until a targeted network sparsity is reached, recent works show that both gradient and weight magnitudes should be considered. In this work, we show that such mechanism, e.g., the order of prioritization and selection criteria, is essential. We introduce a gradient-first magnitude-next strategy for choosing the parameters to prune, and show that a fixed-rate subselection criterion between these steps works better, in contrast to the annealing approach in the literature. We validate this on CIFAR-10 dataset, with multiple randomized initializations on both VGG-19 and ResNet-50 network backbones, for pruning targets of 90, 95, and 98% sparsity and for both initially dense and 50% sparse networks. Our proposed fixed-rate gradient-first gradual pruning (FGGP) approach outperforms its state-of-the-art alternatives in most of the above experimental settings, even occasionally surpassing the upperbound of corresponding dense network results, and having the highest ranking across the considered experimental settings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
21+阅读 · 2021年12月31日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
15+阅读 · 2018年6月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员