With the advancement of deep learning, artificial intelligence (AI) has made many breakthroughs in recent years and achieved superhuman performance in various tasks such as object detection, reading comprehension, and video games. Generative Modeling, such as various Generative Adversarial Networks (GAN) models, has been applied to generate paintings and music. Research in Natural Language Processing (NLP) also had a leap forward in 2018 since the release of the pre-trained contextual neural language models such as BERT and recently released GPT3. Despite the exciting AI applications aforementioned, AI is still significantly lagging behind humans in creativity, which is often considered the ultimate moonshot for AI. Our work is inspired by Chinese calligraphy, which is a unique form of visual art where the character itself is an aesthetic painting. We also draw inspirations from paintings of the Abstract Expressionist movement in the 1940s and 1950s, such as the work by American painter Franz Kline. In this paper, we present a creative framework based on Conditional Generative Adversarial Networks and Contextual Neural Language Model to generate abstract artworks that have intrinsic meaning and aesthetic value, which is different from the existing work, such as image captioning and text-to-image generation, where the texts are the descriptions of the images. In addition, we have publicly released a Chinese calligraphy image dataset and demonstrate our framework using a prototype system and a user study.


翻译:随着深层次学习的进步,人工智能(AI)近年来取得了许多突破,在诸如物体探测、阅读理解和视频游戏等各种任务中取得了超人性业绩。生成模型,例如各种创性反对流网络模型(GAN)模型,已经用于制作绘画和音乐。自然语言处理(NLP)研究(NLP)在2018年也取得了飞跃。自诸如BERT和最近发行的GPT3等经过预先培训的背景语言模型发布以来,自学模型(如BERT和最近发行的GPT3)等。尽管自学应用令人兴奋,但自学仍然大大落后于人类在创造力方面的超人性,而创造力常常被认为是AI的最终月亮。我们的工作受到中国书法的启发,中国书法是一种独特的视觉艺术,其特性本身就是一种美观画。我们还从1940年代和1950年代的《抽象表达主义运动》的绘画中汲取灵感,例如美国画家Franz Kline的作品。在本文中,我们展示了一个基于感性Genal Genal Adal adal adalal adal etal net and the the the the cridudududustrational fistrational fistrational fistrational resdudududududududustrational fications fidudududududustrations fidududuductions ex fiductions, ex ex ex fiduduclishal fidududududududuclishaldaldaldaldaldaldaldalth ficumentaldal figradududududududududududududududududududududududududuclishal fical fical filines, fical filines ficument,我们的创意框架的创意框架的创意的创意框架的创意框架的创意框架的创意框架的创意框架,我们使用了一种中国的书的书的书中,我们的书的书印的书印了一种原制成像系的书面图像系的书的书面图,我们的书面图像系的书面的

0
下载
关闭预览

相关内容

神经语言模型(Neural Language Model,NLM)是一类用来克服维数灾难的语言模型,它使用词的分布式表示对自然语言序列建模。不同于基于类的n-gram模型,神经语言模型在能够识别两个相似的词,并且不丧失将每个词编码为彼此不同的能力。神经语言模型共享一个词(及其上下文)和其他类似词。
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月21日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
207+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员