Approximate computing methods have shown great potential for deep learning. Due to the reduced hardware costs, these methods are especially suitable for inference tasks on battery-operated devices that are constrained by their power budget. However, approximate computing hasn't reached its full potential due to the lack of work on training methods. In this work, we discuss training methods for approximate hardware. We demonstrate how training needs to be specialized for approximate hardware, and propose methods to speed up the training process by up to 18X.


翻译:由于降低硬件成本,近似计算方法对深度学习表现出了巨大的潜力。由于电力预算的限制,这些方法特别适合在电池操作的设备上进行推理任务。然而,近似计算尚未充分发挥其潜力,因为缺乏针对训练方法的研究。在这项工作中,我们讨论了近似硬件的训练方法。我们演示了如何为近似硬件专门设计训练,并提出了可将训练过程加速高达18倍的方法。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
11+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月25日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
11+阅读 · 2018年12月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员