The theory of forbidden 0-1 matrices generalizes Turan-style (bipartite) subgraph avoidance, Davenport-Schinzel theory, and Zarankiewicz-type problems, and has been influential in many areas, such as discrete and computational geometry, the analysis of self-adjusting data structures, and the development of the graph parameter twin width. The foremost open problems in this area is to resolve the Pach-Tardos conjecture from 2005, which states that if a forbidden pattern $P\in\{0,1\}^{k\times l}$ is the bipartite incidence matrix of an acyclic graph (forest), then $\mathrm{Ex}(P,n) = O(n\log^{C_P} n)$, where $C_P$ is a constant depending only on $P$. This conjecture has been confirmed on many small patterns, specifically all $P$ with weight at most 5, and all but two with weight 6. The main result of this paper is a clean refutation of the Pach-Tardos conjecture. Specifically, we prove that $\mathrm{Ex}(S_0,n),\mathrm{Ex}(S_1,n) \geq n2^{\Omega(\sqrt{\log n})}$, where $S_0,S_1$ are the outstanding weight-6 patterns. We also prove sharp bounds on the entire class of alternating patterns $(P_t)$, specifically that for every $t\geq 2$, $\mathrm{Ex}(P_t,n)=\Theta(n(\log n/\log\log n)^t)$. This is the first proof of an asymptotically sharp bound that is $\omega(n\log n)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员