Existing grasp synthesis methods are either analytical or data-driven. The former one is oftentimes limited to specific application scope. The latter one depends heavily on demonstrations, thus suffers from generalization issues; \eg, models trained with human grasp data would be difficult to transfer to 3-finger grippers. To tackle these deficiencies, we formulate a fast and differentiable force closure estimation method, capable of producing diverse and physically stable grasps with arbitrary hand structures, without any training data. Although force closure has commonly served as a measure of grasp quality, it has not been widely adopted as an optimization objective for grasp synthesis primarily due to its high computational complexity; in comparison, the proposed differentiable method can test a force closure within milliseconds. In experiments, we validate the proposed method's efficacy in 6 different settings.


翻译:现有的掌握式综合方法要么是分析性的,要么是数据驱动的,前者通常限于特定应用范围,后者主要依赖示范,因此有普遍性问题;因此,经人掌握式数据培训的模式很难转让给三指控制器。为了解决这些缺陷,我们制定了一种快速和可区分的武力封闭估计方法,能够在没有任何培训数据的情况下,用任意的手结构产生多样和物理稳定的控制器。虽然关闭武力通常是一种掌握式质量的衡量标准,但主要由于计算复杂程度高,它并没有被广泛作为掌握综合的优化目标;相比之下,拟议的不同方法可以在毫秒内测试武力封闭。在实验中,我们验证了在6个不同环境中拟议方法的功效。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
【经典书】Linux UNIX系统编程手册,1554页pdf
专知会员服务
47+阅读 · 2021年2月20日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
45+阅读 · 2020年10月31日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Arxiv
4+阅读 · 2018年10月5日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年6月12日
【经典书】Linux UNIX系统编程手册,1554页pdf
专知会员服务
47+阅读 · 2021年2月20日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
45+阅读 · 2020年10月31日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
Top
微信扫码咨询专知VIP会员