We study the information transmission capacities of quantum Markov semigroups $(\Psi^t)_{t\in \mathbb{N}}$ acting on $d-$dimensional quantum systems. We show that, in the limit of $t\to \infty$, the capacities can be efficiently computed in terms of the structure of the peripheral space of $\Psi$, are strongly additive, and satisfy the strong converse property. We also establish convergence bounds to show that the infinite-time capacities are reached after time $t\gtrsim d^2\ln (d)$. From a data storage perspective, our analysis provides tight bounds on the number of bits or qubits that can be reliably stored for long times in a quantum memory device that is experiencing Markovian noise. From a practical standpoint, we show that typically, an $n-$qubit quantum memory, with Markovian noise acting independently and identically on all qubits and a fixed time-independent global error correction mechanism, becomes useless for storage after time $t\gtrsim n2^{2n}$. In contrast, if the error correction is local, we prove that the memory becomes useless much more quickly, i.e., after time $t\gtrsim \ln(n)$. In the setting of point-to-point communication between two spatially separated parties, our analysis provides efficiently computable bounds on the optimal rate at which bits or qubits can be reliably transmitted via long Markovian communication channels $(\Psi^l)_{l\in \mathbb{N}}$ of length $l\gtrsim d^2 \ln(d)$, both in the finite block-length and asymptotic regimes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
28+阅读 · 2021年10月1日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员