Autonomous Nano Aerial Vehicles have been increasingly popular in surveillance and monitoring operations due to their efficiency and maneuverability. Once a target location has been reached, drones do not have to remain active during the mission. It is possible for the vehicle to perch and stop its motors in such situations to conserve energy, as well as maintain a static position in unfavorable flying conditions. In the perching target estimation phase, the steady and accuracy of a visual camera with markers is a significant challenge. It is rapidly detectable from afar when using a large marker, but when the drone approaches, it quickly disappears as out of camera view. In this paper, a vision-based target poses estimation method using multiple markers is proposed to deal with the above-mentioned problems. First, a perching target with a small marker inside a larger one is designed to improve detection capability at wide and close ranges. Second, the relative poses of the flying vehicle are calculated from detected markers using a monocular camera. Next, a Kalman filter is applied to provide a more stable and reliable pose estimation, especially when the measurement data is missing due to unexpected reasons. Finally, we introduced an algorithm for merging the poses data from multi markers. The poses are then sent to the position controller to align the drone and the marker's center and steer it to perch on the target. The experimental results demonstrated the effectiveness and feasibility of the adopted approach. The drone can perch successfully onto the center of the markers with the attached 25mm-diameter rounded magnet.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员