This paper introduces an expressive class of indexed quotient-inductive types, called QWI types, within the framework of constructive type theory. They are initial algebras for indexed families of equational theories with possibly infinitary operators and equations. We prove that QWI types can be derived from quotient types and inductive types in the type theory of toposes with natural number object and universes, provided those universes satisfy the Weakly Initial Set of Covers (WISC) axiom. We do so by constructing QWI types as colimits of a family of approximations to them defined by well-founded recursion over a suitable notion of size, whose definition involves the WISC axiom. We developed the proof and checked it using the Agda theorem prover.


翻译:本文在建设性类型理论的框架内,引入了称为QWI类型的指数式感知型类。它们是对等理论的指数式系的初始代数,可能具有无限操作者和方程。我们证明,QWI类型可以来自自然编号对象和宇宙的参数类型和感知型,前提是这些宇宙满足了最弱的初始覆盖体(WISC)xiom。我们这样做的方式是将QWI类型构建成一个近似体系的共限,其定义是有充分根据的重现,其定义涉及适当的大小概念,其定义涉及WISC exiom。我们用Agda Theorem 证明书开发了证据并检查了证据。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
77+阅读 · 2021年12月8日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月30日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月28日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
77+阅读 · 2021年12月8日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年12月30日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
0+阅读 · 2021年12月28日
Top
微信扫码咨询专知VIP会员