Vulnerabilities from third-party libraries (TPLs) have been unveiled to threaten the Maven ecosystem. Despite patches being released promptly after vulnerabilities are disclosed, the libraries and applications in the community still use the vulnerable versions, which makes the vulnerabilities persistent in the Maven ecosystem (e.g., the notorious Log4Shell still greatly influences the Maven ecosystem nowadays from 2021). Both academic and industrial researchers have proposed user-oriented standards and solutions to address vulnerabilities, while such solutions fail to tackle the ecosystem-wide persistent vulnerabilities because it requires a collective effort from the community to timely adopt patches without introducing breaking issues. To seek an ecosystem-wide solution, we first carried out an empirical study to examine the prevalence of persistent vulnerabilities in the Maven ecosystem. Then, we identified affected libraries for alerts by implementing an algorithm monitoring downstream dependents of vulnerabilities based on an up-to-date dependency graph. Based on them, we further quantitatively revealed that patches blocked by upstream libraries caused the persistence of vulnerabilities. After reviewing the drawbacks of existing countermeasures, to address them, we proposed a solution for range restoration (Ranger) to automatically restore the compatible and secure version ranges of dependencies for downstream dependents. The automatic restoration requires no manual effort from the community, and the code-centric compatibility assurance ensures smooth upgrades to patched versions. Moreover, Ranger along with the ecosystem monitoring can timely alert developers of blocking libraries and suggest flexible version ranges to rapidly unblock patch versions. By evaluation, Ranger could restore 75.64% of ranges which automatically remediated 90.32% of vulnerable downstream projects.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员