Modern day studies show a high degree of correlation between high yielding crop varieties and plants with upright leaf angles. It is observed that plants with upright leaf angles intercept more light than those without upright leaf angles, leading to a higher rate of photosynthesis. Plant scientists and breeders benefit from tools that can directly measure plant parameters in the field i.e. on-site phenotyping. The estimation of leaf angles by manual means in a field setting is tedious and cumbersome. We mitigate the tedium using a combination of the Mask R-CNN instance segmentation neural network, and Line Segment Transformer (LETR), a vision transformer. The proposed Computer Vision (CV) pipeline is applied on two image datasets, Summer 2015-Ames ULA and Summer 2015- Ames MLA, with a combined total of 1,827 plant images collected in the field using FieldBook, an Android application aimed at on-site phenotyping. The leaf angles estimated by the proposed pipeline on the image datasets are compared to two independent manual measurements using ImageJ, a Java-based image processing program developed at the National Institutes of Health and the Laboratory for Optical and Computational Instrumentation. The results, when compared for similarity using the Cosine Similarity measure, exhibit 0.98 similarity scores on both independent measurements of Summer 2015-Ames ULA and Summer 2015-Ames MLA image datasets, demonstrating the feasibility of the proposed pipeline for on-site measurement of leaf angles.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员