We initiate the study of the algorithmic complexity of Maker-Breaker games played on the edge sets of general graphs. We mainly consider the perfect matching game and the $H$-game. Maker wins if she claims the edges of a perfect matching in the first, and a copy of a fixed graph $H$ in the second. We prove that deciding who wins the perfect matching game and the $H$-game is PSPACE-complete, even for the latter in small-diameter graphs if $H$ is a tree. Toward finding the smallest graph $H$ for which the $H$-game is PSPACE-complete, we also prove that such an $H$ of order 51 and size 57 exists. We then give several positive results for the $H$-game. As the $H$-game is already PSPACE-complete when $H$ is a tree, we mainly consider the case where $H$ belongs to a subclass of trees. In particular, we design two linear-time algorithms, both based on structural characterizations, to decide the winners of the $P_4$-game in general graphs and the $K_{1,\ell}$-game in trees. Then, we prove that the $K_{1,\ell}$-game in any graph, and the $H$-game in trees are both FPT parameterized by the length of the game, notably adding to the short list of games with this property, which is of independent interest. Another natural direction to take is to consider the $H$-game when $H$ is a cycle. While we were unable to resolve this case, we prove that the related arboricity-$k$ game is polynomial-time solvable. In particular, when $k=2$, Maker wins this game if she claims the edges of any cycle.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员