We study the problem of zero-delay coding for the transmission of a Markov source over a noisy channel with feedback and present a reinforcement learning solution which is guaranteed to achieve near-optimality. To this end, we formulate the problem as a Markov decision process (MDP) where the state is a probability-measure valued predictor/belief and the actions are quantizer maps. This MDP formulation has been used to show the optimality of certain classes of encoder policies in prior work, but their computation is prohibitively complex due to the uncountable nature of the constructed state space and the lack of minorization or strong ergodicity results. These challenges invite rigorous reinforcement learning methods, which entail several open questions: can we approximate this MDP with a finite-state one with some performance guarantee? Can we ensure convergence of a reinforcement learning algorithm for this approximate MDP? What regularity assumptions are required for the above to hold? We address these questions as follows: we present an approximation of the belief MDP using a sliding finite window of channel outputs and quantizers. Under an appropriate notion of predictor stability, we show that policies based on this finite window are near-optimal, in the sense that the lowest distortion achievable by such a policy approaches the true lowest distortion as the window length increases. We give sufficient conditions for predictor stability to hold. Finally, we propose a Q-learning algorithm which provably converges to a near-optimal policy and provide a detailed comparison of~the sliding finite window scheme with another approximation scheme which quantizes the belief MDP in a nearest neighbor fashion.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
49+阅读 · 2020年12月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员