Large Language Models (LLMs) promise to automate data engineering on tabular data, offering enterprises a valuable opportunity to cut the high costs of manual data handling. But the enterprise domain comes with unique challenges that existing LLM-based approaches for data engineering often overlook, such as large table sizes, more complex tasks, and the need for internal knowledge. To bridge these gaps, we identify key enterprise-specific challenges related to data, tasks, and background knowledge and extensively evaluate how they affect data engineering with LLMs. Our analysis reveals that LLMs face substantial limitations in real-world enterprise scenarios, with accuracy declining sharply. Our findings contribute to a systematic understanding of LLMs for enterprise data engineering to support their adoption in industry.


翻译:大语言模型(LLMs)有望实现对表格数据的数据工程自动化,为企业提供了降低高昂人工数据处理成本的重要机遇。然而,企业领域存在独特的挑战,现有基于LLM的数据工程方法往往忽视了这些挑战,例如大规模表格、更复杂的任务以及对内部知识的需求。为弥补这些差距,我们识别了与数据、任务和背景知识相关的关键企业特定挑战,并广泛评估了它们如何影响基于LLM的数据工程。我们的分析表明,在真实企业场景中,LLMs面临显著局限性,准确性急剧下降。我们的研究结果有助于系统理解LLM在企业数据工程中的应用,以支持其在工业界的采纳。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员