In this paper, we study the numerical algorithm for a nonlinear poroelasticity model with nonlinear stress-strain relations. By using variable substitution, the original problem can be reformulated to a new coupled fluid-fluid system, that is, a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields. A new technique is used to get the existence and uniqueness of the solution of the reformulated model and a fully discrete nonlinear finite element method is proposed to solve the model numerically. The multiphysics finite element is used to get the discretization of the space variable and the backward Euler method is taken as the time-stepping method in the fully discrete case. Stability analysis and the error estimation are given for the fully discrete case and numerical test are taken to verify the theoretical results.


翻译:在本文中,我们研究了非线性孔径弹性模型与非线性应力-线性关系的数字算法。 通过使用变量替代, 原始问题可以重拟为一个新的混合流体流体-流体系统, 即与伪压力和其他伪压力字段扩散问题相关的非线性非线性传动矢量场的普遍的非线性传动问题。 使用了一种新技术来获得重塑模型解决方案的存在和独特性, 并提出了一个完全离散的非线性非线性有限元素方法来从数字上解析模型。 多物理性有限元素用来获得空间变量的离散化,而落后的 Euler 方法则在完全离散的情况下作为时间步骤法使用。 对完全离散的情况进行了稳定性分析和误差估计, 并用数字测试来核实理论结果 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员