Compute-in-memory (CIM) has emerged as a pivotal direction for accelerating workloads in the field of machine learning, such as Deep Neural Networks (DNNs). However, the effective exploitation of sparsity in CIM systems presents numerous challenges, due to the inherent limitations in their rigid array structures. Designing sparse DNN dataflows and developing efficient mapping strategies also become more complex when accounting for diverse sparsity patterns and the flexibility of a multi-macro CIM structure. Despite these complexities, there is still an absence of a unified systematic view and modeling approach for diverse sparse DNN workloads in CIM systems. In this paper, we propose CIMinus, a framework dedicated to cost modeling for sparse DNN workloads on CIM architectures. It provides an in-depth energy consumption analysis at the level of individual components and an assessment of the overall workload latency. We validate CIMinus against contemporary CIM architectures and demonstrate its applicability in two use-cases. These cases provide valuable insights into both the impact of sparsity patterns and the effectiveness of mapping strategies, bridging the gap between theoretical design and practical implementation.


翻译:存内计算已成为加速机器学习领域工作负载(如深度神经网络)的关键方向。然而,由于刚性阵列结构的固有局限性,在存内计算系统中有效利用稀疏性面临诸多挑战。考虑到多样化的稀疏模式和多宏块存内计算结构的灵活性,设计稀疏深度神经网络数据流并开发高效的映射策略也变得更加复杂。尽管存在这些复杂性,目前仍缺乏针对存内计算系统中多样化稀疏深度神经网络工作负载的统一系统化视角与建模方法。本文提出CIMinus,一个专用于存内计算架构上稀疏深度神经网络工作负载成本建模的框架。该框架提供了组件级别的深度能耗分析以及整体工作负载延迟评估。我们将CIMinus与当代存内计算架构进行验证,并通过两个应用案例展示了其适用性。这些案例为理解稀疏模式的影响及映射策略的有效性提供了宝贵见解,从而弥合了理论设计与实际实施之间的鸿沟。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员